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ABSTRACT 
This paper presents the preliminary design of a three stage fan for a twin-spool low bypass ratio turbofan 
aeroengine. Design produre has been initialized with the specification of technical requirements obtained from 
the parametric cycle analysis. With this information, a suitable baseline engine is selected that has the closest 
technical specifications. The design process continues with the determination of the number of fan stages and 
other stage parameters. The next step is the designation of the blade airfoil profiles such that they have adequate 
stall margin in subsonic conditions. Airfoils are designed to avoid both positive and negative stall situations. 
Hub profiles have noticeably larger cambers due to lower linear speeds in comparison to tip profiles. By 
stacking up airfoil profiles in the radial direction form hub to tip a quasi three dimensional design is reached. 
Finally, solid models of the rotor and the stator parts were produced. 
 
Keywords: Compressor design, Blade airfoil, Compressor aerodynamics. 
 
 

DÜŞÜK BYPASS ORANLI ÇİFT MAKARALI BİR TURBOFAN MOTORUNUN SANKİ ÜÇ BOYUTLU 
KOMRESÖR TASARIMI 

 
ÖZET 
Bu çalışmada düşük tali akım (bypass) oranına sahip, çift makaralı bir turbofan motorunun başlangıç tasarımı 
anlatılmıştır. Tasarıma parametrik çevrim analizinden elde edilen teknik isterlerin özellikleriyle başlanmıştır. Bu 
bilgiyle teknik özelliklere uygun bir temel motor seçilmiştir. Tasarım süreci fan kademe sayısının diğer kademe 
parametrelerinin belirlenmesiyle devam etmiştir. Bir sonraki aşama sesaltı koşullarında gerekli sonuçları veren 
kompresör kanatçık profilinin seçilmesi olmuştur. Profiller pozitif ve negatif tutunma kaybı durumlarından 
kaçınacak şekilde tasarlanmıştır. Kök profillerin seçiminde uç profillere nazaran düşük lineer hızlarda 
çalışmasından ötürü kamburluğun bu profillerde büyük olmasına dikkat edilmiştir.Radyal yönde profillerin 
düzenli bir şekilde dizilmesinden dolayı sanki üç boyutlu bir tasarıma ulaşımıştır. Son olarak, rotor ve stator 
kısımlarının katı modeli çizilmiştir.  
 
Anahtar Kelimeler: Kompresör tasarımı, Kanatçık profili, Kompresör aerodinamiği. 
 
 
1. INTRODUCTION 
 
In this paper, fan design for a low bypass ratio 
aeroengine is performed according to pre-specified 
design objectives. Such engines are typically utilized 
in fighter aircraft. F-100 engine shown in Fig. 1 is a 
typical example. This engine is also used as a baseline 
for this study. Detailed design requirements for the 
whole aircraft and also for the engine can be found in 
[1]. After a through constraint [2] and parametric 
cycle analyses [1], the engine is sized to breathe an air 
mass flow rate of 201.8 kg/s. Moreover, the low 

pressure compressor (fan) is required to deliver a 
pressure ratio of 3.8. Incoming Mach number is also 
dictated by nominal flight conditions, however it can 
be altered through an area change at the inlet. Other 
relevant design point values are throughly discussed at 
appropriate locations within the article. 
 
Note that in aircraft gas turbines the design engineer is 
more concerned with maximizing the work done per 
stage while trying to maintain an acceptable level of 
overall axial compressor efficiency. On the other 
hand, increased  stage loading translates into certain 
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ߛ
ܴ ሺ1 ൅

ߛ െ 1
2 ଶሻܯ

ఊାଵ
ଶሺଵିఊሻ (3) 

 
Since the stages are repeating ߚଶ ൌ  ଵ from velocityߙ
triangles. 
 
ଶோݒ ൌ ଵݒ ൌ ݎݓ െ  ଶ (4)ݒ
 
ଵݒ ൅ ଶݒ ൌ  (5) ݎݓ
 
In this case the diffusion factor is the same for both 
the rotor and the stator. If one solves for ߙଶ from Eq. 6 
 

ܦ ൌ ൬1 െ
ଶߙݏ݋ܿ

ଵߙݏ݋ܿ
൰ ൅ ൬

ଶߙ݊ܽݐ െ ଵߙ݊ܽݐ

ߪ2 ൰  ଶ (6)ߙݏ݋ܿ

Therefore for a given value of ߙଵ, σ and D there is 
only one corresponding ߙଶ value [5], which can be 
solved from Eq. 7. 
 
 ଶߙݏ݋ܿ
 

ൌ
ሺ1ߪ2 െ ߁ሻܦ ൅ ඥ߁ଶ ൅ 1 െ ଶሺ1ߪ4 െ ሻଶܦ

ଶ߁ ൅ 1  
(7) 

 
where, 
 

߁ ൌ
ߪ2 ൅ ଵߙ݊݅ݏ

ଵߙݏ݋ܿ
 (8) 

 
Temperature rise accross the stage can be calculated 
from the total enthalpy change, which in turn can be 
calculated from the velocity triangles as per Eq. 9. 
Note that since the gas is calorifically perfect and 
there is no chemical reaction, then ∆݄ ൌ ܿ௣∆ܶ. 
 
∆ ௧ܶ ൌ ௧ܶଷ െ ௧ܶଵ 
 

ൌ ଶܸ
ଶ െ ଵܸ

ଶ
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ଶ

ܿ௣
ൌ ቆ

ଵߙଶݏ݋ܿ

ଶߙଶݏ݋ܿ
െ 1ቇ 

(9) 

 
Consequently total enthalpy ratio accross the stage is 
calculated according to Eq. 10. 
 

߬ ൌ ௧ܶଷ

௧ܶଵ
 

 

ൌ
ሺߛ െ 1ሻܯଵ

ଶ

1 ൅ ሺߛ െ 1ሻܯଵ
ଶ/2

ቆ
ଵߙଶݏ݋ܿ

ଶߙଶݏ݋ܿ
െ 1ቇ ൅ 1 

(10) 

 
Knowing the total temperature ratio τ and stage 
polytropic efficiency e stage pressure ratio π can be 
calculated with Eq. 11. 
 

ߨ ൌ ௧ܲଷ

௧ܲଵ
ൌ ሺ߬௦ሻఊ௘೎/ሺఊିଵሻ (11) 

Another important quantity of interest to the designer 
is the disk speed ܴݓ to the inlet speed ଵܸratio. With 
the aid of velocity triangles and some trigonometry 
this can be calculated as follows (Eq. 12). 
 
ݎݓ

ଵܸ
ൌ ଵߙ݊ܽݐଵሺߙݏ݋ܿ ൅  ଶሻ (12)ߙ݊ܽݐ

 
Consequently for a specified value of the diffusion 
factor, solidity and stage polytropic efficiency one can 
plot the whole family of solutions for a repeating row 
repeating stage compressor stage as a function the 
flow inlet angle ߙଵ [5]. The results are provided in 
Fig.4. Note that, this figure holds the key for the 
repeating-rowrepeating stage design procedure. 
 
For a design to be realistic one must take into account 
radial variations. In order to do a constant amount of 
work on the fluid passing through a stage less turning 
of the fluid is required with increasing radius due to 
the Euler pump equation [6]. Furthermore, static 
pressure has to increase to keep the radial equilibrium 
of the swirling flow. Consequently, airfoil and flow 
properties should vary in the radial direction. 
 

 
 

Figure 4. Repating Compressor Stage  
(D = 0.55, σ = 1.0, e = 0.90). 

 
In this paper, a case where the stagnation enthalpy is 
constant along the radius is taken into consideration. 
One such velocity distribution is the free vortex swirl 
distribution. For free vortex swirl distribution the swirl 
velocity is given by Eq. 13. 
 
ଵݒ ൌ ܽ

௠ݎ

ݎ െ ݎ௠ݎܾ  
& 
ଶݒ ൌ ܽ ൅ െܾݎ௠ݎ  
 

(13) 

 
Note that for a repeating stage design as is the case 
here ݒଵ ൌ  ଷ and the degree of reaction is provided byݒ
Eq. 14. 
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°ܴ ൌ 1 െ
ܽ

௠ݎݓ
ቀ

௠ݎ

ݎ ቁ
ଶ
 (14) 

 
where the constant a is given by, 
 
ܽ ൌ ௠ሺ1ݎݓ െ °ܴ௠ሻ (15) 
 
Inlet guide vanes (IGV) are commonly used prior to 
the first compressor stage. They have a dual purpose; 
first one is to adjust to Mach number of the flow, the 
second one is to divert the flow angle for the very first 
compressor stage. Assuming that the flow is isentropic 
between the free stream (0) and the exit of inlet guide 
vanes (1), the following relation can be written 
(Eq.16). 
 
଴ሻܯሺܲܨܯ଴ܣ ൌ ሺܿߙݏ݋ଵሻܣଵܯFPሺܯଵሻ (16) 
 
Table 1 shows typical design values for axial 
compressors of aeroengines. These values 
nevertheless represent the state-of-the-art and hence 
are used as guidelines throughout the design 
procedure. 
 
Table 1. Typical values of compressor parameters [5]. 

 

Parameter Typical 
value 

Flow coefficient 0.6 
D-Factor 0.45 
Axial Mach number 0.5 
Degree of reaction 0.5 
Reynolds number based on chord 5x105 
Tip relative Mach number (1st 
rotor) 1.3-1.4 

Stage average solidity 1.4 
Stage average aspect ratio 1 
Polytropic efficiency 0.9 
Hub rotational speed 300 m/s 
Tip rotational speed 400 m/s 
Loading coefficient 0.35 
DCA blade Mach range 0.8-1.2 
NACA-65 series Mach range <0.8 
Blade leading radius %5 of tmax 
Compressor pressure ratio per 
spool up to 20 

Aspect ratio, fan ~3 
Aspect ratio, compressor ~2 
Taper ratio 0.8 

 
3. DESIGN METHOD 
 
The fan design process is started with examining the 
fan of the baseline model F-100, which serves as the 
powerplant to the F-16 fighter aircarft [7]. With the 
information gained from baseline model and the 
parametric cycle analysis, the new parameters are 
determined for design point. After the design point 
determination, the number of stages is determined 
with the help of information of baseline model and 

other low bypass ratio turbofan engines. Computations 
are carried out in OCTAVE environment. Finally, a 
solid model is drawn for the three-stage fan. 
 
3.1. Design Point Determination 
The design process is accomplished with the selection 
of the fan design point and the determination of the 
number of fan stages. Off-design point complications 
were not addressed. Thereafter, stage parameters D, 
M0, σ, e and the aerodynamic definition of each stage 
are chosen according to design guidelines and the 
current technology level.Diffusion factor D is a 
measure of difficulty for modelling the cascade and 
airfoil flows in compressor. To determine a realistic 
value, the present technology level is considered. With 
the state-of-the-art aerodynamic understanding 
designing for diffusion factors up to 0.6 are quite 
possible. Thus it is logical to select D to be 0.56 for 
the first design iteration. The other design point values 
are M0 = 0.64,σ = 1 and e = 0.89. 
 
3.2. Determination of the Number of Stages 
The number of stage has a number of effects on the 
engine performance, especially on the pressure ratio 
required for mixing and the temperature rise. 
Determination of the number of stage is performed 
within the light of the parametric cycle analysis, 
baseline model and the existing engine models. The 
most of the existing low bypass ratio turbofan engines 
such as F-119 and EJ-200 utilize three stages in their 
low pressure compressors and the selected baseline 
model F-100 turbofan engine has also a three stage fan 
[8]. Furthermore, the parametric analysis shows that 
the selection of fan pressure ratio to be 3.8 would be 
more logical in order to achieve required performance. 
If the fan pressure ratio is determined to be 3.8, this 
ratio can be easily accomplished with the three stage 
fan. As a result, fan pressure ratio is selected to be 3.8 
for our design. 
 
3.3. Aerodynamic Design 
It is fortunate that, compressor stage design is not as 
though as a turbine stage design. This is because the 
Mach number of the flow decreases as it passes 
through stages of compression and therefore 
compressibility effects are reduced and also the 
probability of shock is avoided. Furthermore due to 
the reduced blade height at later stages (due to area 
contraction) the difference between hub and tip speeds 
also diminished aiding the designer. Most of the 
compressors utilize NACA 65-series airfoils that give 
adequate stall margin in subsonic conditions. In 
multistage compressors, airfoils are designed to avoid 
several stall situations. To illustrate, the front face of 
the compressor tends to positive stall while the aft 
stage has a tendency to negative stall that is the main 
reason why airfoils are important in a compressor. 
 
For the current design NACA 65A010 blade profile is 
used for all stages. This profile is shown in Fig. 5, 
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